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Interface scaling in a two-dimensional porous medium under combined viscous, gravity,
and capillary effects
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We have investigated experimentally the competition between viscous, capillary, and gravity forces during
drainage in a two-dimensional synthetic porous medium. The displacement of a mixture of glycerol and water
by air at constant withdrawal rate has been studied. The setup can be tilted to tune gravity, and pressure is
recorded at the outlet of the model. Viscous forces tend to destabilize the displacement front into narrow
fingers against the stabilizing effect of gravity. Subsequently, a viscous instability is observed for sufficiently
large withdrawal speeds or sufficiently low gravity components on the model. We predict the scaling of the
front width for stable situations and characterize it experimentally through analyses of the invasion front
geometry and pressure recordings. The front width under stable displacement and the threshold for the insta-
bility are shown, both experimentally and theoretically, to be controlled by a dimensionless numberF which is
defined as the ratio of the effective fluid pressure drop~i.e., average hydrostatic pressure drop minus viscous
pressure drop! at pore scale to the width of the fluctuations in the threshold capillary pressures.
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I. INTRODUCTION

Multiphase fluid flows in porous media have many impo
tant applications in geological engineering, including grou
water flow modeling and oil recovery, where an increase
the recovery rate is obtained by injection of another flu
phase@1–8#. In immiscible two phase flows, strong varia
tions exist in the obtained displacement structures and
namics, depending on the flow rates, wetting properties,
cosity ratios, and density differences of the involved flu
@9,10#.

If one considers situations in which a nonwetting flu
invades a porous medium saturated with a wetting fl
~drainage! with a higher viscosity, in the absence of gravi
two regimes can be distinguished. At very low flow rates,
viscous pressure drop across the porous medium is neglig
in comparison to the inhomogeneity in the threshold ca
lary pressures inside the medium. The topology of the r
dom porous medium causes the fluctuations in the pres
field needed for the nonwetting phase to invade new po
The resulting displacement structure is controlled by ca
lary effects, and is well described by the invasion percolat
algorithm. Thiscapillary fingering regimehas been studied
extensively@11–13#. At high flow rates, viscous forces dom
nate capillary and gravitational effects. The displacemen
stable or unstable depending on which phase is the m
viscous@4,14–16#. If the defending phase is the most visco
one, the displacement is unstable@4,14,17,18#. This viscous
fingering regimehas strong analogies to diffusion-limited a
gregation~DLA ! patterns@19–23#. In the opposite case in
which the invading fluid is the most viscous one, visco
effects stabilize the front@16,24#.

However, most real reservoir systems are not flat a
horizontal, and are therefore sensitive to gravity effects
the two fluids involved have different densities, grav
forces modify the displacement structure dramatically@25–
1063-651X/2002/66~5!/051603~12!/$20.00 66 0516
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28. Gravity causes hydrostatic pressure gradients that m
stabilize or destabilize fluid motion.

In the capillary fingering regime, stabilization of the flu
interface by gravity has been studied both theoretically a
experimentally in two and three dimensional med
@25,26,29,30#. Unstable buoyancy driven migration of
lighter fluid into a denser one has also been studied by us
experiments, computer simulations and theoretica
@27,28,31–33#. All these studies of gravitational effects con
centrate on situations where the flow rates are so low
capillary forces are large compared to viscous forces at p
scale. For such systems the obtained flow patterns are un
stood in terms of the competition between gravity forces a
local nonhomogeneous capillary forces@25,26#. It should be
noted that though the obtained displacement patterns c
be modeled without considering viscosity, viscous effe
have to be taken into account to understand the local dyn
ics during invasion@34,35#.

The competition between gravity and viscous forces
been studied for immiscible flows in a Hele-Shaw cell wit
out any porous medium. Saffman and Taylor have stud
small perturbations of the displacement front, deriving a c
terion for the instability@36#; but it is not obvious that the
arguments developed for this particular geometry apply
flows in porous media, where the complexity of the flo
boundary conditions plays a crucial role@17#. The deforma-
tion and breakup of nonwetting clusters by a viscous pr
sure field has also been studied for a system without gra
effects@37#. Situations where all three forces are significa
have been studied for imbibition in a sand pack@38#, with a
focus on the saturation of the nonwetting fluid, and for sim
lations of viscous fingering in a gravity field, at reservo
scale@7,39#.

The purpose of this work is to address the scaling pr
erties of an interface during a two phase flow in a poro
medium when capillary, gravity and viscous forces play
comparable role. We have studied specifically the stabili
©2002 The American Physical Society03-1
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tion and destabilization of the displacement front obtained
injection of air from above in a two dimensional porous m
dium saturated with a wetting fluid. This system was stud
systematically by tuning gravity and viscous forces: t
gravitational component on the model could be varied
tilting the model at different angles, while the magnitude
viscous forces could be changed by varying the inject
rate, which was typically high enough for viscous fingeri
to occur at low inclination angles.

The present article is organized as follows. The exp
mental setup and the methods used for treating the data
described and discussed in Sec. II. In Sec. III, we discuss
competition between gravity forces, viscous forces and c
illary forces from a theoretical point of view. The experime
tal results are presented in Sec. IV, which is followed by
discussion of the results in Sec. IV E and some conclud
remarks in Sec. V.

II. EXPERIMENTAL METHOD

A. Experimental setup and procedure

The model used in the study is similar to the one used
@14,15# and @37#. A two dimensional porous media is mad
by pouring glass beads of diametera51 mm on the sticky
side of a 5003500 mm2 contact paper until no more bead
stick to the surface. The excess beads are then remove
that the resulting porous matrix is a random monolayer

FIG. 1. Sketch of the two-dimensional porous medium used
the experiments. The beads are 1 mm in diameter and the dist
between the channels isL5350 mm. The model is sealed wit
silicone glue along the edges. The size of the model isL3L.
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beads. The contact paper is glued to a Plexiglas plate w
milled in and outlet channels. The channels are parallel
separated by 350 mm. They are 5 mm wide, 8 mm deep
350 mm long, which makes the size of the porous medi
L3L, with L5350 mm. When the model is installed, th
outlet channel is connected to a pump and aHoneywell
26PCA Flow-Throughpressure sensor. The channels are
open and the edges of the model are sealed and constra
with silicone glue. Then another sheet of contact pape
glued on top of the beads so as to make a ‘‘sandwich’’~see
Fig. 1!. The model is then placed~beads down! on top of
another Plexiglas plate with a ‘‘pressure cushion’’ to ens
that the model is kept in position and that it is always on
one bead diameter thick. The porosityf of the model is
measured to be 0.63 and the permeabilityk is measured to
be k50.018931023 cm251948 darcy.

The defending wetting fluid used in all our experiments
a 90–10 % by weightglycerol-water solution dyed with
0.1% Negrosine.Air is used as the invading nonwettin
fluid. The wettingglycerol-water solution has a viscosity o
mw'0.2 Pa s and a density ofrw51235 kg m23 at room
temperature. The corresponding parameters for thenonwet-
ting air aremnw51.931025 Pa s andrnw5116 kg m23. The
surface tension between these two liquidss is 6.431022

N m21. The temperature in the defending fluid is measu
at the outlet of the model during each experiment to be a
to estimate the viscosity. A61 °C uncertainty between thi
measured value and the temperature of the fluid inside
model is assumed, resulting in a6231022 Pa s uncertainty
in the estimated viscosity.

To get stable flow out of the model we use gravity
pump the defending fluid out of the model. This is done
leading the fluid out of the model and down to a reservoir
the floor below (;4 m height difference!. The flow rate is
controlled by a valve and measured during experiments w
an electronic scale. Flow rate variations during an exp
ment are always smaller than 3% ofQ.

The Honeywell 26PCA Flow-Throughpressure senso
measures the pressure in the outlet channel during exp
ments. By using the pressure in the outlet channel at bre
through as a reference, we measure the pressure differ
between the invasion front and the outlet channel during
experiment.

n
ce
-
r-
f

FIG. 2. Sketch of the experi-
mental setup. The gravity compo
nent on the porous medium is va
ied by changing the tilt angle o
the setup.
3-2
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INTERFACE SCALING IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 66, 051603 ~2002!
FIG. 3. ~a! Comparison between the original picture of the flow structure and the extracted invasion front. The whole mod
335 cm2) is represented. The withdrawal rate is 1.5 ml min21. The inclination angle is 20.3°~experiment 38!. This situation corresponds
to an intermediate regime in which a significant viscosity-related fingering exists at some places in the displacement structure, w
parts of it exhibit a dynamics closer to capillary fingering. Anisotropic shapes of the interface and the trapped clusters are the sig
this crossover regime.~b! Corresponding extracted black and white picture. The displacement structure appears white. Its aspect is r
the physical phenomena occurring during drainage.~c! Black and white picture after removal of the trapped clusters. The front plotted in~a!
on top of the raw image has been obtained as the line separating the white from the black area in~c!.
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The model is clamped to a light box that can be tilted
various inclination angles to vary the component of grav
on the porous medium. The component of gravity along
modelg is given byg5g0sin(a), whereg0 is the accelera-
tion of gravity anda is the inclination angle~see Fig. 2!. The
pressure drop between the outlet of the model and the re
voir is much larger than that between the inlet and the ou
of the model. The flow rate is therefore controlled by t
former pressure drop, and its dependence on the tilting of
experimental setup or on the volume of wetting fluid insi
the model is very weak. Thus, gravity can be considered
be tuned independently of the flow rate.

The displacement structure is visualized by illuminati
the model with the light box and taking pictures with a
attachedKodak DCS 420 CCDcamera, which is controlled
by a computer over a SCSI connection. Pictures are take
regular time intervals during fluid displacement. They hav
resolution of 153631024 pixels, with 8 bits gray levels
which provides a spatial resolution of 0.37 mm per pixel
;2.56 pixels per pore.

B. Image treatment

1. Front extraction

The raw images display a variety of gray scales. A reg
with very light gray shadings corresponding to air and oth
with dark shadings corresponding to dyed glycerol@see Fig.
3~a!# can be distinguished. Glass beads appear as med
gray spots randomly distributed in the picture. In order
extract the part of the model that is filled with air, all gra
levels below a given threshold are set to black, while
others are set to white. The threshold chosen varies along
direction normal to the direction of drainage, to account
the enlightenment nonuniformity. During this thresholdi
process, glass beads are arbitrarily determined to be pa
the white or of the black region. This does not affect t
accuracy of the following analyses, since only scales lar
than the typical pore size,a, are considered as significan
Geometrical information about the drainage process c
tained in the raw picture is passed to the resulting black
white picture@see Fig. 3~b!#. We call the white region in this
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picture displacement structure. Apart from included glass
beads, it corresponds to the part of the model filled with

The black islands inside the white area in the black a
white picture areclusters of wetting fluid that have been
trapped in air during drainage, as two neighboring fingers
the fronts advancing ahead of the rest of the front ha
merged. Removal of the trapped clusters is achieved
painting white all black islands in the picture except the la
est one, leaving only one continuous white area and
continuous black area@see Fig. 3~c!#. The latter is then sepa
rated from the former by a continuous line, thedisplacement
front, which is the limit for the penetration of air inside glyc
erol. In what follows, we often simply call itthe front. In Fig.
3~a!, the front is shown in black on top of the raw imag
Visual inspection shows a very good consistency between
raw image and the extracted front.

The spatial resolution in our setup allows us to obse
geometrical features for all scales down to pore scale,a.

2. Front analysis

The front is analyzed in terms of vertical extension, a
statistical geometrical properties~using the two-point corre-
lation function and the box counting method!.

The descending coordinate along the maximum slope
the model is denotedz, the horizontal direction normal toz is
calledx. The frame (x,z) defines positions inside the mode
Some of these positions, denotedr i5(xi ,zi), correspond to
points that belong to the front. From the knowledge of the
points, we define the following characteristic quantities
the front: its maximal extension alongz, Dz, its width, w,
defined as the root mean square of thezi distribution, and the
two-point correlation functionC(s), s being the scale of ob-
servation:

C~s!5^^Q~r0!Q~r01s!&& usu5s , ~1!

wherer0 is a point on the front ands is a vector from this
point. Q(r) is 1 for points on the front and 0 otherwise. Th
double average denotes an average over allr0 on the front
and all possible directions ofs. For a fractal front with a
fractal dimensionD, it has been shown@40# that C(s) is a
power law of the scales with an exponent 22D. We also
3-3
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MÉHEUST et al. PHYSICAL REVIEW E 66, 051603 ~2002!
define the numberNs of square boxes of side lengths that
are required for entirely covering the front. For a fractal fro
with a fractal dimensionD, this box-counting method pro
vides a power law with an exponent2D @41#.

III. COMPETITION BETWEEN GRAVITY
AND VISCOUS FORCES

When one fluid invades another fluid with a different de
sity, gravity forces tend to either stabilize or destabilize flu
displacement, depending on the density differences and
directions @25,27,28,33,42#. We focus here on a situatio
where a less dense fluid with a negligible viscosity displa
a denser viscous fluid from above. In this case, the hyd
static pressure gradient tends to annihilate any height di
ence between two points along the front, while local visco
effects tend to promote any part of the front that is progre
ing faster than the rest of it. The influence of gravity on t
displacement structure depends both upon the gravity c
ponent on the model and upon the relative magnitudes
capillary and viscous forces.

The latter relative magnitudes are usually quantified
use of the capillary numberCa , which denominates the rati
of viscous forces to capillary forces at pore level:

Ca5
mva2

gk
, ~2!

where m is the viscosity of the fluid,v is the filtering or
Darcy velocity in the medium,a is the typical pore size,g is
the surface tension between the two fluids andk is the per-
meability of the porous medium. Various values for the ca
illary number give rise to different displacement structur
The limit cases, i.e., capillary fingering forCa!1 and vis-
cous fingering forCa@1, are well known.

For displacements sufficiently slow for viscous forces
be negligible with respect to the fluctuations in thresh
capillary pressures, the width of the invasion front is co
trolled by the latter fluctuations along the front. The dime
sionlessBond number Bo @25–27#, quantifies the competi
tion between capillary forces and gravity at pore scale:

Bo5
Drga2

g
, ~3!

whereDr is the difference in the two liquids’ densities andg
is the component of gravity along the direction of displac
ment. The front widthw for these slow displacements wa
found to scale with theBond numberasw;Bo

2n/(11n) @25–
27#, wheren is the percolation correlation length expone
@43#, which for 2D systems isn54/3.

In another limit case in which a less viscous fluid invad
a more viscous liquid at high capillary number, the displa
ment structure is controlled by viscous forces, which des
bilize the invasion front. This viscous fingering regime h
been studied both in terms of experiments@14,18,44# and
numerical simulations@9,17,45#.

The effect of gravity has been studied for sufficiently lo
capillary numbers in both two and three dimensio
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@25,27,29,46#, but what happens in the crossover regim
where gravity, capillary forces and viscous forces all are s
nificant has with the exception of reservoir scale simulatio
@7,39# not been studied. This crossover regime is what we
addressing in the following discussion.

A. Study of a stable configuration

1. Evolution of the pressure

We consider the situation where the front width reache
limit value after a certain time, and only exhibits small flu
tuations around this value afterward~i.e., stable fronts!. For
constant flow rate the mean position of the front along thz
direction,zf (z50 at the outlet!, would depend linearly on
time, with a rate that is imposed by the withdrawal rate a
the rate of cluster trapping. We assume that the viscous p
sure gradient inside the model can be considered as the
of an average uniform gradient and of local time-varyi
fluctuations, where the former term is given by the Dar
law: u“Pu5mv/k. As a result, the pressure at the outlet
the model fluctuates around a value given by the relation

P̄5P01~rg2mv/k!zf~ t !, ~4!

whereP0 is the pressure in the nonwetting fluid~air!, r is the
density of the defending fluid,m is the viscosity of the de-
fending fluid, v is the Darcy velocity, andk is the model
permeability. Therefore, under these assumptions the p
sure P recorded at the model outlet as a function of tim
fluctuates around a linear trend, the slope of which is ne
tive and proportional torg2mv/k. Note that such a linea
dependence of the outlet pressure is only expected for st
fronts. The conditions, in which these conditions are met,
explicited in Sec. III C.

2. Scaling of the front width

The following arguments follow the lines of@25,26,30#.
Consider two different pores along the invasion front,
beled A and B and separated by a distancej along thez
direction ~see Fig. 4!. If the density and viscosity of the
invading nonwetting fluid~air! are negligible, the pressure i
the invading nonwetting fluid is constant and in the follow
ing we use this as our reference pressurePNW50. The cap-
illary pressure over poreA is denotedPA . If we further
assume that the viscous field in the defending wetting fl
along the front can be described by Darcy’s law, the capill
pressure over poreB, PB , can be written as the sum o
hydrostatic and viscous pressure differences:

PB5PA1rgj2
vm

k
j. ~5!

The pore throats in the porous medium have widths t
are spatially uncorrelated. Each pore throat exhibits a ca
lary threshold pressurePt which is the minimum capillary
pressure needed for the interface to penetrate the pore th
For a throat with a meniscus at capillary pressurePc , the
3-4
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criterion for invasion isPc.Pt . The randomness of the po
rous medium gives a distributionN(Pt) for the capillary
threshold pressure.

Let us now consider an arbitrary throat in the medium a
assume it has a meniscus with capillary pressurePc . The
probability p that this throat will be invaded is

p5p* 1E
P*

Pc
N~Pt!dPt , ~6!

where p* is the occupation probability at the percolatio
capillary pressureP* for a flat model.P* would then be the
lowest capillary pressure needed to produce a percola
cluster of invading fluid. Taylor-expandingN(Pt) aroundP*
we get

N~Pt!5N~P* !1N8~P* !~Pt2P* !1•••

and to the lowest order in (Pt2P* ) Eq. ~6! becomes

p2p* 5N~P* !~Pc2P* !. ~7!

If we now let the capillary pressure over poreA in Eq. ~5! be
the percolation threshold capillary pressureP* , we can use
Eq. ~5! to rewrite Eq.~7! as

p2p* 5N~P* !S rgj2
vm

k
j D . ~8!

Assuming thatN(Pt) varies slowly aroundP* , we can esti-
mateN(P* )51/Wt @30#, whereWt is the width of the nor-
malized capillary threshold pressure distributionN(Pt).
With this assumption, Eq.~8! can be rewritten as

p2p* 5
j

a
F, ~9!

where the dimensionlessgeneralized fluctuation number
@30# has been introduced:

FIG. 4. Sketch of a section of the front including two por
separated by a vertical distancej. The capillary pressure over th
pore labeledA is assumed to be the critical percolation thresh
pressurePC . Assuming stable displacement, we can calculate
pressure at poreB.
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The generalized fluctuation numberF quantifies the ratio be-
tween the average pressure drop over pores and the flu
tions in capillary threshold pressures in the porous mediu
It can be further related to the previously defined Bond a
capillary numbers according to

Bo2Ca5
a

g
WtF. ~11!

For convenience we define a generalized bond numberBo* as

Bo* 5Bo2Ca . ~12!

The lengthj is assumed now to be the correlation length
percolation clusters. Since the linear size of the larg
trapped clusters of wetting fluid is limited by the front wid
w @25,26,40,47#, the correlation length is related to the fro
width in our problem as:w5j/a. From percolation theory
we know @43,47# that

A
j

a
5~p2p* !2n, ~13!

wheren is the correlation length exponent andA is a con-
stant of order unity@26,48#. This scaling relation combined
with Eq. ~9! yields

Aw5A
j

a
5S j

aD 2n

F2n, ~14!

which leads to the following scaling relation for the fro
width w:

w;F2n/(11n)5S g

Wta
Bo* D 2n/(11n)

. ~15!

This relation is similar to the one obtained in capillary fi
gering under gravity@25,30#, but in our case the generalize
fluctuation numberF replaces the ordinary Bond numberBo
in the scaling relation~15!. It is important to note thatF
depends on the width of the capillary threshold distributi
Wt and that an increase in this width therefore gives an
crease in the front width. In the experiments described in
paper,Wt is kept constant. The range of validity of Eq.~15!
does not extend to situations where both viscous and gr
tational forces exceed the capillary forces on pore scale.

B. Limit of stability

The front widthw in the scaling relation in Eq.~15! di-
verges when the generalized Bond number goes to z
~gravity forces balance viscous forces!. This suggests a cri-
terion for finite front widths and thus stable displaceme
when

e
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rg2
vm

k
.0. ~16!

This is the same stability criterion as derived by Saffman a
Taylor @36# for the Hele-Shaw cell, though capillary forces
a Hele-Shaw configuration act at the scale of the sys
width L ~see Fig. 1!, while in our porous medium they act a
the pore scalea, which is much smaller thanL. Section IV E
addresses in more detail the differences between the me
nisms of the instability in our model and in a Hele-Shaw ce

C. Unstable displacement

Slow buoyancy driven unstable displacement has b
studied in both two and three dimensions@27,31,32,49#. In
this slow regime, string~finger! like structures develop. Thei
characteristic widthwf was found to scale with the Bon
number in a similar fashion as the width of stable fronts:

wf;Bo
2n/(11n) . ~17!

From these results on buoyancy driven unstable system
might conjecture that the above equation can be extende
the unstable case to include viscous effect, by replacing
Eq. ~17! Bo with 2Bo* :

wf;~2Bo* !2n/(11n). ~18!

An experimental verification of this conjecture is the purpo
of ongoing work.

IV. RESULTS

With the setup described in Sec. II A, four main series
experiments were performed, corresponding to a total of
experiments: three series at constant capillary numberCa
.8231023, 13031023, and 19031023, and one series a
constant Bond numberBo.0.155. Table I summarizes th
experimental conditions for all experiments: inclinatio
anglea and withdrawal rateQ, and the corresponding cap
illary numberCa , Bond numberBo , and generalized Bond
numberBo* . The experiments are numbered by decreas
Bo* .

A. Observations of the displacement structure
when varying Bo*

Figure 5 shows the pictures of experiments for vario
capillary numbers and Bond numbers. The pictures sho
here correspond to experiments labeled 4, 8, 13, 17, 22
25, 28, 29, 31, 46, 49, 50, 58 in Table I, from top to botto
and from left to right, respectively. Each column of the figu
corresponds to the same capillary numberCa , that is, to the
same withdrawal speed applied during the experiment.
withdrawal rates in question are all large enough for the s
tem to exhibit viscous fingering at zero inclination ang
Each line of the figure corresponds to the same general
Bond numberBo* 5Bo2Ca . The maximum accessible Bon
number is related to the maximum inclination angle poss
with the setup~around 55°). As a consequence, the ma
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mum accessibleBo* for a given capillary number decrease
with Ca , which explains why the highest values ofBo* in-
vestigated here could not be reached for all values ofCa .

When increasing gravity for a given withdrawal spe
~thus, following a column in Fig. 5 from bottom to top!, the
displacement front is observed to evolve from narro
branched fingers to a nearly flat geometry, if the generali
Bond numberBo* can be increased enough. Thus, visco
effects are responsible for a fingering of the displacem
structure that can be stabilized by gravity. The similarity b
tween all pictures on a given line of Fig. 5 suggests that
generalized Bond number is the controlling parameter for
process. This is consistent with relation~15!, which will be
discussed further in Sec. IV D.

Front destabilization at large withdrawal speed and l
gravity appears more clearly in Fig. 6, which looks alike F
5, except that each picture represents the whole dynamic
an experiment. Indeed, a gray level map displays the ev
tion of the displacement front with time. Time is the vertic
descending coordinate, and each horizontal line on a ma
a representation of the front at a given time. The coordin
along thet-line is the horizontal coordinate,x. The gray level
at a givenx along a givent-line corresponds to the differenc
between the position alongz of the most advanced fron
point at horizontal positionx and the mean front advance
ment alongz. A constant gray level along a horizontal lin
means that the front is flat. Large variations of the gray lev
along the line mean that some parts of the front~correspond-
ing to dark shadings! are left far behind others~correspond-
ing to light shadings!. Thus, front destabilization appears
an increase of the roughness of the gray level map from
top to the bottom of the figure. Light shaded structures c
respond to fingers development. These structures can w
as a result of the branching of the fingers, at lowBo* . The
same gray scale has been used throughout all pictures, w
allows us to compare the importance of the fingering proc
in the various experiments. Pictures with homogeneous
small amplitude roughness correspond to experiments wi
stabilized front. The two experiments withBo* .0 fulfill this
criterion. The intermittency of the dynamics for stable d
placement is visible: a finger stops growing after a whi
because its length has reached a value that causes grav
stabilize it; then another finger grows, or the slow part of t
front catches up fingers. AsBo* is decreased below 0, gravit
is not sufficient to prevent the fingers from growing forev
and, subsequently, to keep the front total vertical ext
around a fixed value. This fingering becomes more import
as Bo* is further decreased. Thus, the crossover for the
cous instability in the presence of gravity seems to oc
aroundBo* 50, in good consistency with the theory expos
in Sec. III.

B. Transition from stable to unstable drainage

The destabilization of the front for negative values ofBo*
clearly appears in Fig. 7~a!, where the maximal extension o
the front along the direction of displacement (z), Dz, is
plotted as a function of time normalized by the time at bre
through, for experiments atCa around 0.08. Themaximal
3-6
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TABLE I. Summary of the inclination angles and withdrawal rates used for each of the 58 experiments. The corresponding char
numbersCa , Bo , andBo* are also given. Depending on the withdrawal rate, the uncertainty onCa and, consequently, onBo* , not shown in
this table, ranges between 0.009 and 0.025.

Index 1 2 3 4 5 6 7 8 9 10 11 12

a ~deg! 54.9 54.9 54.9 54.7 54.9 45.0 54.2 35.7 54.9 30.2 54.9 45.

Q(ml/min) 0.040 0.480 0.710 1.000 1.280 0.990 1.500 0.990 1.750 0.990 1.740 1.

Bo 0.155 0.155 0.155 0.154 0.155 0.134 0.153 0.110 0.155 0.095 0.155 0.

Ca 0.0032 0.0389 0.0581 0.0826 0.0988 0.0787 0.1193 0.0825 0.1351 0.0779 0.1424 0

Bo* 0.1516 0.1159 0.0967 0.0719 0.0560 0.0551 0.0342 0.0279 0.0198 0.0173 0.012520.0003

Index 13 14 15 16 17 18 19 20 21 22 23 24

a ~deg! 24.9 39.9 22.6 54.9 39.9 31.1 19.9 33.1 37.1 17.4 34.9 30.

Q(ml/min) 0.980 1.480 1.000 2.260 1.540 1.480 1.030 1.480 1.530 1.000 1.510 1.

Bo 0.080 0.121 0.073 0.155 0.121 0.098 0.064 0.103 0.114 0.057 0.108 0.

Ca 0.0809 0.1245 0.0787 0.1622 0.1296 0.1142 0.0811 0.1211 0.1358 0.0803 0.1329 0

Bo* 20.0013 20.0031 20.0060 20.0074 20.0082 20.0165 20.0167 20.0177 20.0217 20.0237 20.0246 20.0285

Index 25 26 27 28 29 30 31 32 33 34 35 36

a ~deg! 50.2 48.1 15.0 12.5 27.0 28.9 44.9 48.1 26.8 54.7 54.9 54.

Q(ml/min) 2.020 2.000 1.040 1.000 1.480 1.500 2.020 2.060 1.610 2.070 2.520 2.

Bo 0.145 0.141 0.049 0.041 0.086 0.091 0.134 0.141 0.085 0.154 0.155 0.

Ca 0.1778 0.1745 0.0859 0.0787 0.1257 0.1332 0.1778 0.1860 0.1330 0.2029 0.2042 0

Bo* 20.0324 20.0336 20.0369 20.0378 20.0397 20.0417 20.0442 20.0452 20.0476 20.0485 20.0494 20.0502

Index 37 38 39 40 41 42 43 44 45 46 47 48

a ~deg! 44.9 20.3 10.0 44.9 44.9 43.7 5.0 14.9 10.0 0.0 35.6 28.

Q(ml/min) 2.050 1.470 1.000 1.960 2.000 2.000 0.990 1.460 1.510 1.020 2.200 2.

Bo 0.134 0.066 0.033 0.134 0.134 0.131 0.016 0.049 0.033 0.000 0.110 0.

Ca 0.1867 0.1191 0.0880 0.1891 0.1961 0.1945 0.0841 0.1262 0.1235 0.0961 0.2072 0

Bo* 20.0531 20.0535 20.0551 20.0555 20.0625 20.0638 20.0676 20.0776 20.0907 20.0961 20.0970 20.1008

Index 49 50 51 52 53 54 55 56 57 58

a (deg) 5.2 21.1 15.0 0.0 0.0 54.7 15.0 9.3 32.3 0.1

Q(ml/min) 1.490 1.970 1.950 1.470 1.470 2.800 2.000 1.980 2.600 1.970

Bo 0.017 0.068 0.049 0.000 0.000 0.154 0.049 0.031 0.101 0.000

Ca 0.1208 0.1779 0.1626 0.1169 0.1169 0.2810 0.1992 0.1819 0.2750 0.1886

Bo* 20.1036 20.1098 20.1136 20.1169 20.1169 20.1265 20.1502 20.1513 20.1739 20.1882
s-
en

t

t
tu

tw

tu
F

xis
m

the

ue

lu-

g

n-

vity
hen
extensionof the front is defined as the maximal vertical di
tance between two points on the front. At large positive g
eralized Bond numbers, the front extension rapidly grows
reach a constant plateau. Fluctuations ofDz occur around
this average front extension due to the randomness of
medium. As the Bond number is decreased, these fluc
tions grow. Viscous fingering features appear:Dz exhibits
sudden drops that are characteristic of the merging of
nearby fingers. For negative values ofBo* in the intermediate
regime, the front extension has a growing trend with no sa
ration and important sudden drops due to finger merging.
large negative values ofBo* ~not shown in Fig. 7!, these
drops disappear, as a small number of very thin fingers e
that never merge. The crossover between stable displace
05160
-
o
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a-

o

-
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ent

and unbounded fingering appears to occur for a value of
generalized Bond number between20.00660.009 and
0.01760.013, in good consistency with the predicted val
for the generalized Bond number at the crossover:Bo* 50.

Also consistent with the predicted crossover is the evo
tion of the pressure drop across the model. Figure 7~b! shows
the evolution of the pressure drop between the front~atmo-
spheric pressure! and the outlet channel of the model durin
the same experiments as in Fig. 7~a!. For stabilized experi-
ments (Bo* .0), it has been predicted to be linearly depe
dent on time. This can be seen in Fig. 7~b! for the four
experiments with stable displacement. ForBo* close to 0, the
pressure drop shows little variations during drainage: gra
exactly balances the mean viscous pressure gradient. W
3-7



l e
a
en

si-
tion
ed,

n.
in-
ap-
in
n
st
hibit
ured

are
of
n-
na-

s
-

ts

er

in

tu

en

cture
for
-

de-
l
the
o-

peri-
he

MÉHEUST et al. PHYSICAL REVIEW E 66, 051603 ~2002!
the average total pressure gradient turns positive, loca
fects in the viscous pressure gradient become significant,
nonlinearity appears in the pressure curves, while the tr
of the pressure evolution changes from a decreasing to
increasing behavior.

FIG. 5. Pictures of the displacement structure for three serie
experiments at capillary numberCa.0.081, 0.123, and 0.183, re
spectively. The provided ranges include the uncertainty onCa ~and
subsequently, onBo* ) due to that on the viscosity measuremen
The pictures represent the whole model (35335 cm2). For each
series, the displacement structure for an experiment with a gen
ized Bond numberBo* around 0.072, 0.028,20.002, 20.028,
20.041,20.107, and20.189~measured values! is shown. Stabili-
zation of the front is observed for all series when sufficiently
creasingBo* ~bottom to top!; the crossover value ofBo* for stabili-
zation appears to be close to 0. The numbers inserted in the pic
refer to the index in Table I.
05160
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C. Geometrical properties of the front

The influence on drainage dynamics of the various phy
cal effects involved appears when considering the evolu
of the front fractal dimension during an experiment. Inde
the limit cases in terms of displacement rate are well know
For very slow displacements, viscous effects have little
fluence on the interface. The displacement front for this c
illary fingering regime is analogous to what is observed
inversion percolation. It is fractal, with a fractal dimensio
1.33 @13#. In contrast, viscous fingering occurs for very fa
displacements, and leads to thin branched fingers that ex
a fractal structure with a dimension that has been meas
to 1.6260.04 @14#.

The fractal dimensions measured in our experiments
consistent with these well-known values. Two families
fronts with behaviors close to gravity stabilized capillary fi
gering and viscous fingering, respectively, have been a

of

.

al-

-

res

FIG. 6. Evolution of the dynamics of the displacement wh
varying capillary numberCa and generalized Bond numberBo* .
The values for these numbers are the same as in Fig. 5. Each pi
displays the evolution of the displacement front with time. Axes
time and horizontal directionx are shown in the figure. The hori
zontal size of a picture corresponds to the model width~35 cm!. The
vertical size corresponds to the time at breakthrough, which
pends on the values forCa andBo . The gray level is proportiona
to the advancement of the front point in question with respect to
front mean position. Only the two top pictures, that exhibit a h
mogeneous roughness of small amplitude, correspond to ex
ments where the viscous instability is overcome by gravity. T
numbers inserted in the pictures refer to the index in Table I.
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lyzed using both the two-point correlation function and t
box-counting algorithm, with consistency. The results of
box-counting method are shown in Fig. 8. The box-count
function for family A ~capillary fingering!, shown in Fig. 8,
has been obtained by averaging over all stabilized front
the corresponding experiment. The box-counting function
family B ~viscous fingering! is the box-counting function for
a sole front because of the unstable growth. At scales sm
than a crossover scales,sc.20 pore sizes, frontsA exhibit
a regime consistent with that observed for invasion perc
tion, with a fractal dimension close to 1.3. The crosso
scale,sc , is consistent with the observed front width. A
scales larger thansc , the front is seen as line. FrontB dis-
plays a fractal structure with a fractal dimension close to 1
for scales larger than 2 pore scales and smaller than 80
scales. FrontB also exhibits some broadening of the finge
at small scales, related to capillary effects. By ‘‘sm

FIG. 7. ~a! Evolution of the extension of the front along th
direction of displacement (z), Dz, as a function of time normalized
by the time at breakthrough.~b! Evolution of the pressure drop
between the front and the model outlet channel, as a functio
normalized time also. The uncertainties onBo* are shown only in
~b!. Both plots are consistent with the theoretical prediction o
crossover atBo* 50.
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scales,’’ we mean scales smaller than the size of the clus
trapped inside the branched fingers.

For the intermediate regimes in which viscous forces a
gravity are of the same order of magnitude, parts of the fr
display fingers controlled by viscous effects. The finger t
progress faster than other parts of the front, which are c
trolled by the balance between capillary forces and grav
~see Fig. 3!. The evolution of the correlation function on th
whole range of scales during an experiment gives hints
the dynamics of the displacement process. In Fig. 9~b!,
density-density correlation functions for a series of expe
ments in stable regime and corresponding to various va
of the generalized Bond number,Bo* , have been plotted as
function of the scale normalized by the mean front width,w.
One front from each of these experiments is shown in F
9~a!. They come from seven different experiments in t
stable regime withBo50.154 but with different injection
rates. By increasing the injection rate, the pressure gradi
in the fluid decrease, which yields a lowerBo* and therefore
a wider front. At the largest speeds the fronts look visua
somewhat different from the fronts observed for pure ca
lary stabilized fingering. The depth of the fjords are typica
larger than their width.

The correlation functions in Fig. 9~b! were obtained by
averaging over all stable fronts from the experiments
question. The correlation function is divided bys20.67,
which is the expected scaling in the capillary fingering
gime. The correlation function corresponding to the slow
withdrawal rate~experiment 1! exhibits at small scales a
clear horizontal line characteristic for capillary fingerin
The horizontal lineC is a guide to the eye. At higher injec

of

FIG. 8. Characterization of two fronts corresponding resp
tively to capillary ~A! and viscous~B! fingering, using the box-
counting method. The front labeled A corresponds to an experim
with a very slow withdrawal rate~0.006 ml/min!. Front B corre-
sponds to an experiment with no gravity and a withdrawal rate o
ml/min. These two experiments are not referenced in Table I.Ns is
the number of boxes of side lengths required for entirely covering
the front. The observed trends for A and B are consistent with th
expected for pure capillary~slope 21.33) and viscous fingering
~slope21.62), respectively.
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tion rates the correlation function displays a crossover wh
becomes more significant as the injection rate is increa
This crossover is the Hallmark of significant viscous effe
and is seen as an increase in the effective slope on le

FIG. 9. ~a! Fronts taken from experiments atBo.0.154 and for
6 different displacement rates, all corresponding to positive ge
alized Bond numbersBo* ~stable displacement!. ~b! Corresponding
correlation functions for these experiments. Each function has b
obtained by averaging over all stable fronts. The scale is normal
by the measured front width,w, which, according to relation~15!, is
expected to scale asBo*

24/7 ~see Fig. 10 for a confirmation of thi
prediction!. The horizontal lineC corresponds to the capillary fin
gering behavior, the long-dashed lineV to the pure viscous finger
ing behavior, and the dotted lineL to the linear shape of the front
Experiment 1 is close to pure capillary fingering@as exposed in Fig.
8 ~case A!#. Due to viscous effects, the dynamics of the displa
ment is not that of invasion percolation for regimes close to
instability threshold.
05160
h
d.
s
th

scales larger than the initial capillary regime~the part on
small length scales with a slope close to zero!, but smaller
than the front width. It is important to note that all the
fronts are in the stable regime. As a guide to the eye we h
also plotted the slope 0.3~see long-dashed lineV), which is
the expected slope for unstable viscous fingers. As see
the figure, the effective slope observed in the viscous cro
over regime is larger than the slope characteristic of p
capillary fingering, but smaller than that characteristic
pure viscous fingering. At scales larger than the width of
fronts, the fronts become effectively linear with a slope c
responding the dotted lineL, which is the expected result fo
a linear front.

D. Scaling of the front width for stable displacements

In the case of stable displacement, Eq.~15! predicts a
scaling of the front width as a power law of the generaliz
Bond number,Bo* 5Bo2Ca , with an exponent2n/(11n)
524/7 ('20.57). Figure 10 shows the evolution of th
front width, w, as a function ofBo* , for a series of experi-
ments at Bond numberBo50.15460.01. The experiments in
question are indexed 1, 2, 3, 4, 5, 7, and 9 in Table I. T
values for the front width have been obtained by averag
over all stabilized fronts from the corresponding experime
The error bars account for the sensitivity of the time aver
ing on the choice of the time after which the fronts are su
posed to be stabilized. The dependence ofw on Bo* is con-
sistent with a power law with an exponent20.55, in good
agreement with the theoretical predictions.

E. Discussion

The viscous instability observed in the present article
pears for a magnitude of gravity identical to that of the v

r-

en
d

-
e

FIG. 10. Scaling of the front width as a function of the gene
alized Bond numberBo* for a series of experiments in stable co
figuration atBo.0.154. The regression is consistent with a pow
law with an exponent20.55, in good agreement with the theore
cally predicted relation~15!. Vertical error bars represent the unce
tainty on the determination of the mean front width for a giv
experiment. Horizontal error bars are related to the uncertaint
the viscosity measurements.
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cous forces. Such a crossover was also observed by Saf
and Taylor in a Hele-Shaw cell with no porous medium u
der the same conditions. However, though the forces res
sible for the stability or instability of the interface are
identical nature, the resulting displacement processes are
nificantly different in the two geometries.

The first striking difference lies in the nature of stab
displacement in the two configurations. A stable displa
ment in the Hele-Shaw cell configuration means that
front exhibits no roughness. Observed in the uniformly mo
ing referential attached to its mean position, the front is s
ply static. In our porous model, in contrast, an initial fro
roughness appears due to capillary fluctuations; during l
stages of the drainage process, this roughness develop
to both local viscous effects and inhomogeneous capil
forces. The resulting displacement front has a signific
roughness in the direction of displacement. Observed in
moving frame attached to its mean position, the front is e
changing, but with an amplitude that saturates after a cer
time to a value that can be as high as 50 pores scale u
Thus,stable displacementconsists here in an ongoing com
petition process where departing viscous fingers are
vented by gravity from developing too much ahead of
front mean position on behalf of other fingers or slowly mo
ing portions of the front. The front width is controlled by th
ratio of the mean effective pressure gradient inside the mo
~i.e., hydrostatic pressure gradient minus viscous pres
gradient! to the inhomogeneous capillary forces. The me
effective pressure gradient is denoted by the general
Bond numberBo* 5Bo2Ca . The inhomogeneous capillar
threshold pressures result from the randomness in the po
media. This inhomogeneity could be quantified by the wid
Wt of the capillary threshold pressure distributionN(Pt). In
our case, it is measured to beWt'g/(4a). The ratio be-
tween the effective pressure gradient and the fluctuation
capillary threshold pressure distribution is quantified by
dimensionless fluctuation numberF defined in Eq.~10!. Due
to the homogeneity of our porous model,Wt happens to be
constant in space. For a medium with a varying pore sc
Eq. ~15! indicates possible significant changes in the fro
width during the displacement process for constant flow r
and gravity component on the model. In the framework
this study, the extensively studied capillary and viscous
gering appear as limit cases where the capillary number,Ca ,
or Bond number,Bo , respectively, are negligible. The sca
ing relation obtained for the front width in stable displac
ment as a function ofF, and thus, ofBo* , is therefore a
generalization of that previously obtained for capillary fi
gering. Indeed, Bond number and generalized Bond num
are identical when the capillary number is negligible.

Second, the transition from stable to unstable displa
ment in our system does not consist of a radical chang
the local dynamics of the interface, as for viscous instabi
observed in a Hele-Shaw cell. For a configuration close
the instability threshold, it is difficult to know, by looking a
the local dynamics of the displacement in our experimen
model, whether the front amplitude is going to reach a sa
ration value or whether it is going to grow forever. This
also visible from the large fluctuations in the front wid
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evolution for configurations close to the instability thresho
in Fig. 7: do these large fluctuations diverge or do they
cillate around a constant value? In the case of the Hele-S
cell configuration, in contrast, the instability can be inferr
as soon as a significant roughness appears in the front.
sense, the complexity of the porous medium translates in
complexity in the viscous instability.

V. CONCLUSION

We have studied experimentally the displacement o
mixture of glycerol and water by air at constant volumet
flow rate in a synthetic random two-dimensional mediu
The experimental setup allowed the tuning of gravity by t
ing the setup and of viscous effects by changing the w
drawal rate. The aim of the study was to investigate
crossover regime from capillary fingering to viscous fing
ing during drainage with gravity. To account for the relati
importance of viscous- and gravitational effects during dra
age, we have introduced the fluctuation numberF which is
defined as the ratio of the effective fluid pressure drop~i.e.,
average hydrostatic pressure drop minus viscous pres
drop! at pore scale to the width of the fluctuations in t
threshold capillary pressures. We observe a crossoverF
50 between a configuration where the displacement fr
keeps a finite extension along the direction of flow (F.0)
and a situation where fingers grow ahead of other parts of
front, forever (F,0). Gravity stabilized capillary fingering
and pure viscous fingering appear as limit cases where
cous effects or gravity effects, respectively, have little infl
ence on the displacement structure.

In intermediate regimes (F close to 0!, the dynamics of
the displacement seems to hold features characteristic o
vasion percolation~for short length scales of the front! as
well as features characteristic of viscosity-controlled fing
ing. The crossover is smooth and might lead to an appa
misleading dimension of the front in a midrange betwe
capillary regime and viscous fingering dimension. The dra
age process is both inhomogeneous in time and space.
positive values of the fluctuation number, the front width h
a physical meaning in terms of fluctuations of the fro
around a mean position that progresses at constant sp
This front width is controlled by viscous effects and scales
a power law of the fluctuation number with an expone
24/7 @see Eq.~15!#, a scaling law that we predict theoret
cally and that is nicely confirmed by the experiments.

For negative values of the fluctuation number, charac
istic length scales are difficult to find in the problem. Th
width of the developing fingers might be a suitable char
teristic scale, with a scaling relation identical to Eq.~15! as a
function of the generalized Bond number’s~or, equivalently,
the fluctuation number’s! absolute value.

ACKNOWLEDGMENTS

The work was supported by NFR, the Norwegian R
search Council, VISTA, the Norwegian Academy of Scien
and Letters’ research program with Statoil and the Fren
Norwegian collaboration PICS.
3-11



-

ch

J

s.

.

.

tt.

tt.

T.

,

p.

C.
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