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We have investigated experimentally the competition between viscous, capillary, and gravity forces during
drainage in a two-dimensional synthetic porous medium. The displacement of a mixture of glycerol and water
by air at constant withdrawal rate has been studied. The setup can be tilted to tune gravity, and pressure is
recorded at the outlet of the model. Viscous forces tend to destabilize the displacement front into narrow
fingers against the stabilizing effect of gravity. Subsequently, a viscous instability is observed for sufficiently
large withdrawal speeds or sufficiently low gravity components on the model. We predict the scaling of the
front width for stable situations and characterize it experimentally through analyses of the invasion front
geometry and pressure recordings. The front width under stable displacement and the threshold for the insta-
bility are shown, both experimentally and theoretically, to be controlled by a dimensionless nembah is
defined as the ratio of the effective fluid pressure diiapn, average hydrostatic pressure drop minus viscous
pressure dropat pore scale to the width of the fluctuations in the threshold capillary pressures.
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I. INTRODUCTION 28. Gravity causes hydrostatic pressure gradients that might
stabilize or destabilize fluid motion.

Multiphase fluid flows in porous media have many impor-  In the capillary fingering regime, stabilization of the fluid
tant applications in geological engineering, including groundnterface by gravity has been studied both theoretically and
water flow modeling and oil recovery, where an increase irexperimentally in two and three dimensional media
the recovery rate is obtained by injection of another fluid[25,26,29,30 Unstable buoyancy driven migration of a
phase[1-8§]. In immiscible two phase flows, strong varia- lighter fluid into a denser one has also been studied by use of
tions exist in the obtained displacement structures and dygXPeriments, ~ computer simulations ~and  theoretically
namics, depending on the flow rates, wetting properties, vigl27,28,31-3R All these studies of gravitational effects con-

cosity ratios, and density differences of the involved fluigscentrate on situations where the flow rates are so low that
[9,10]. capillary forces are large compared to viscous forces at pore

scale. For such systems the obtained flow patterns are under-
tood in terms of the competition between gravity forces and
ocal nonhomogeneous capillary ford&s,26. It should be

If one considers situations in which a nonwetting fluid
invades a porous medium saturated with a wetting flui

(drainagg with a higher viscosity, in the absence of gravity, noted that though the obtained displacement patterns could

two regimes can be distinguished. At very low flow rates, thé,o qqeled without considering viscosity, viscous effects
viscous pressure drop across the porous medium is negligibig, e ¢4 pe taken into account to understand the local dynam-
in comparison to the inhomogeneity in the threshold capily.g during invasiori34,35.

lary pressures inside the medium. The topology of the ran- Tpe competition between gravity and viscous forces has
dom porous medium causes the fluctuations in the pressuisen studied for immiscible flows in a Hele-Shaw cell with-
field needed for the nonwetting phase to invade new poresut any porous medium. Saffman and Taylor have studied
The resulting displacement structure is controlled by capilsmall perturbations of the displacement front, deriving a cri-
lary effects, and is well described by the invasion percolationterion for the instability{ 36]; but it is not obvious that the
algorithm. Thiscapillary fingering regimehas been studied arguments developed for this particular geometry apply to
extensively{11-13. At high flow rates, viscous forces domi- flows in porous media, where the complexity of the flow
nate capillary and gravitational effects. The displacement iboundary conditions plays a crucial rdl&7]. The deforma-
stable or unstable depending on which phase is the mosion and breakup of nonwetting clusters by a viscous pres-
viscous[4,14-18§. If the defending phase is the most viscoussure field has also been studied for a system without gravity
one, the displacement is unstalpfg14,17,18 This viscous effects[37]. Situations where all three forces are significant
fingering regimehas strong analogies to diffusion-limited ag- have been studied for imbibition in a sand p48&], with a
gregation(DLA) patterns[19-23. In the opposite case in focus on the saturation of the nonwetting fluid, and for simu-
which the invading fluid is the most viscous one, viscouslations of viscous fingering in a gravity field, at reservoir
effects stabilize the frort16,24. scale[7,39.

However, most real reservoir systems are not flat and The purpose of this work is to address the scaling prop-
horizontal, and are therefore sensitive to gravity effects. Iferties of an interface during a two phase flow in a porous
the two fluids involved have different densities, gravity medium when capillary, gravity and viscous forces play a
forces modify the displacement structure dramaticB®y—  comparable role. We have studied specifically the stabiliza-
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beads. The contact paper is glued to a Plexiglas plate with

contact paper milled in and outlet channels. The channels are parallel and

. \ separated by 350 mm. They are 5 mm wide, 8 mm deep and
\ . Srods T\ airinlet 350 mm_Iong, which makes the size of thg porous medium
e e iniet cliagial L XL, with L=350 mm. When the model is installed, the
outlet chanel perspex:plate outlet channel is connected to a pump andHaneywell
/ 26PCA Flow-Througtpressure sensor. The channels are cut
open and the edges of the model are sealed and constrained

to pump pssure sensor with silicone glue. Then another sheet of contact paper is
glued on top of the beads so as to make a “sandwid®e
FIG. 1. Sketch of the two-dimensional porous medium used in,:ig. 1). The model is then placetbeads downon top of
the experiments. The beads are 1 mm in diameter and the distancgg,sther Plexiglas plate with a “pressure cushion” to ensure
between the channels Is=350 mm. The model is sealed with 5; the model is kept in position and that it is always only
silicone glue along the edges. The size of the modélXd.. one bead diameter thick. The porosiy of the model is
measured to be 0.63 and the permeabikitys measured to

. o . . be k=0.0189< 10" 3 cm?=1948 darcy.
tion and destabilization of the displacement front obtained by 1, defending wetting fluid used in all our experiments is

injection of air from above in a two dimensional porous me-, g4_1( 0 by weightglycerol-water solution dyed with

dium saturated with a wetting fluid. This system was studiecg_l% Negrosine Air is used as the invading nonwetting

systgmz_itlcally by tuning gravity and viscous force{s: thequid. The wetting glycerol-water solution has a viscosity of
gravitational component on the model could be varied by

- ) . . w,~0.2 Pas and a density gf,=1235 kgm 3 at room
tilting the model at different angles, while the magnitude Oftemperature. The corresponding parameters fomthewet-

viscous forces could be changed by varying the injection[m air arew..—=1.9x 105 Pas an —116 kami 3. The
rate, which was typically high enough for viscous fingeringSU?face teﬁgivcv)n Between these tv?/)gwliqu'tdsis 96.4>< '10,2

to occur at low inclination angles. Nm~ 1. The temperature in the defending fluid is measured

The present article is organized as follows. The EXPETI ¢ the outlet of the model during each experiment to be able

mental setup and the methods used for treating the data . : . o . )
described and discussed in Sec. Il. In Sec. Ill, we discuss ta{g estimate the viscosity. 1 °C uncertainty between this

o . . feasured value and the temperature of the fluid inside the
competition between gravity forces, viscous forces and cap

. . s . : model is assumed, resulting in“a2x 10~ ? Pa's uncertainty
illary forces from a theoretical point of view. The experimen- . ; ; :
in the estimated viscosity.

tal results are presented in Sec. IV, which is followed by a To get stable flow out of the model we use gravity to

discussion of the results in Sec. IV E and some concludin%ump the defending fluid out of the model. This is done by

remarks in Sec. V. leading the fluid out of the model and down to a reservoir on
the floor below (-4 m height difference The flow rate is

Il. EXPERIMENTAL METHOD controlled by a valve and measured during experiments with
an electronic scale. Flow rate variations during an experi-
ment are always smaller than 3% Qf

The model used in the study is similar to the one used in The Honeywell 26PCA Flow-Througlpressure sensor

[14,19 and[37]. A two dimensional porous media is made measures the pressure in the outlet channel during experi-
by pouring glass beads of diamet+1 mm on the sticky ments. By using the pressure in the outlet channel at break-
side of a 50500 mn? contact paper until no more beads through as a reference, we measure the pressure difference
stick to the surface. The excess beads are then removed between the invasion front and the outlet channel during the
that the resulting porous matrix is a random monolayer ofexperiment.

A. Experimental setup and procedure

digital camera

FIG. 2. Sketch of the experi-
mental setup. The gravity compo-
contact paper nent on the porous medium is var-

§\ perspex plate ied by changing the tilt angle of

the setup.

pressure cussion

mylar film
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Flow

(@)

FIG. 3. () Comparison between the original picture of the flow structure and the extracted invasion front. The whole model (35
x 35 cnt) is represented. The withdrawal rate is 1.5 miminThe inclination angle is 20.3¢experiment 38 This situation corresponds
to an intermediate regime in which a significant viscosity-related fingering exists at some places in the displacement structure, while other
parts of it exhibit a dynamics closer to capillary fingering. Anisotropic shapes of the interface and the trapped clusters are the signature of
this crossover regiméb) Corresponding extracted black and white picture. The displacement structure appears white. Its aspect is related to
the physical phenomena occurring during draindgeBlack and white picture after removal of the trapped clusters. The front plottdl in
on top of the raw image has been obtained as the line separating the white from the black(area in

The model is clamped to a light box that can be tilted topicture displacement structureApart from included glass
various inclination angles to vary the component of gravitybeads, it corresponds to the part of the model filled with air.
on the porous medium. The component of gravity along the The black islands inside the white area in the black and
modelg is given byg=ggsin(e), whereg, is the accelera- White picture areclustersof wetting fluid that have been
tion of gravity ande is the inclination anglésee Fig. 2 The  trapped in air during drainage, as two neighboring fingers of
pressure drop between the outlet of the model and the reséf€ fronts advancing ahead of the rest of the front have
voir is much larger than that between the inlet and the outlef"€rged. Removal of the trapped clusters is achieved by
of the model. The flow rate is therefore controlled by thePainting whlte_aII black islands in the plcturg except the larg-
former pressure drop, and its dependence on the tilting of th§St ©ne, leaving only one continuous white area and one
experimental setup or on the volume of wetting fluid insidecontinuous black arefsee Fig. &)]. The latter is then sepa-

the model is very weak. Thus, gravity can be considered t ated from the forrr_ler_ by a continuous_line, kﬂi_eplagement
be tuned independently.of the, flow rate ront, which is the limit for the penetration of air inside glyc-

. o . . ._.erol. In what follows, we often simply call the front In Fig.
The displacement structure is visualized by |IIum|nat|ng3(a) the front is shown in black on top of the raw image
the model with the light box and taking pictures with an,_.’ '

T Visual inspection shows a very good consistency between the
attachedKodak DCS 420 CC[Eamerg, whl_ch is controlled .o, image and the extracted front.
by a computer over a SCSI connection. Pictures are taken at The spatial resolution in our setup allows us to observe

regular time intervals during fluid displacement. They have &eometrical features for all scales down to pore saale,
resolution of 153& 1024 pixels, with 8 bits gray levels,
which provides a spatial resolution of 0.37 mm per pixel or 2. Front analysis

~2.56 pixels per pore. The front is analyzed in terms of vertical extension, and

statistical geometrical properti€égsing the two-point corre-
B. Image treatment lation function and the box counting method
1. Eront extraction The descending coordinate along the maximum slope of
) _ _ ~ the model is denoted the horizontal direction normal tis
_The raw images display a variety of gray scales. A region:ajiedx. The frame &,z) defines positions inside the model.
w!th very light gray shadings co_rrespondmg to air and pther%ome of these positions, denotee (x;,z;), correspond to
with dark shadings corresponding to dyed glycgsele Fig. points that belong to the front. From the knowledge of these
3(@)] can be distinguished. Glass beads appear as mediufpints, we define the following characteristic quantities for
gray spots randomly distributed in the picture. In order tOine front: its maximal extension alorgy Az, its width, w,
extract the part of the model that is filled with air, all gray yefined as the root mean square of zhdistribution, and the

levels below a given threshold are set to black, while the,yq_point correlation functiol©(s), s being the scale of ob-
others are set to white. The threshold chosen varies along thg,ration:

direction normal to the direction of drainage, to account for

the enlightenment nonuniformity. During this thresholding C(s)=((O(rg)O(ro+9)))jg=s: (1)
process, glass beads are arbitrarily determined to be part of

the white or of the black region. This does not affect thewhererg is a point on the front and is a vector from this
accuracy of the following analyses, since only scales largepoint. ®(r) is 1 for points on the front and 0 otherwise. The
than the typical pore sizes, are considered as significant. double average denotes an average overgatin the front
Geometrical information about the drainage process conand all possible directions of For a fractal front with a
tained in the raw picture is passed to the resulting black anéractal dimensiorD, it has been showfd0] that C(s) is a
white picture[see Fig. 8)]. We call the white region in this power law of the scals with an exponent 2 D. We also
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define the numbeN; of square boxes of side lengghthat ~ [25,27,29,46 but what happens in the crossover regime

are required for entirely covering the front. For a fractal frontWhere gravity, capillary forces and viscous forces all are sig-

with a fractal dimensiorD, this box-counting method pro- nificant has with the exception of reservoir scale simulations

vides a power law with an exponentD [41]. [7,39] not been studied. This crossover regime is what we are
addressing in the following discussion.

IIl. COMPETITION BETWEEN GRAVITY
AND VISCOUS FORCES A. Study of a stable configuration

When one fluid invades another fluid with a different den- 1. Evolution of the pressure

sity, gravity forces tend to either stabilize or destabilize fluid We consider the situation where the front width reaches a
displacement, depending on the density differences and fIOWmit value after a certain time, and only exhibits small fluc-

directions[25,27,28,33,4p We focus here on a situation tuations around this value afterwafice., stable fronts For

where a Ies; dense f.IUid with a negligible.viscosity disF)Iaceﬁonstant flow rate the mean position of the front alongzhe
a denser viscous fluid from above. In this case, the hydroairection,zf (z=0 at the outlet would depend linearly on

static pressure gradient tends to annihilate any height d'ﬁerﬁme, with a rate that is imposed by the withdrawal rate and

ence between two points along the front, while Io_cal VISCOUS6 rate of cluster trapping. We assume that the viscous pres-
effects tend to promote any part of the front that is Progressg e gradient inside the model can be considered as the sum

ing faster than the rest of it. The influence of gravity on the " if ; f local time- :
displacement structure depends both upon the gravity conﬁ an average uniform gradient and of local time-varying

. : uctuations, where the former term is given by the Darcy
ponent on the model and upon the relative magnitudes O|aW' |W|: /. As a result. the pressure at the outlet of
capillary and viscous forces. : MUTK. the p

The latter relative magnitudes are usually quantified b)}he model fluctuates around a value given by the relation
use of the capillary numbeZ,, which denominates the ratio

of viscous forces to capillary forces at pore level: P= Pot+ (pg— mulk)zi(t), (4
pod? . . . .
Ca= Y (2 wherePy is the pressure in the nonwetting fluiir), p is the

density of the defending fluidy is the viscosity of the de-
where 4 is the viscosity of the fluidp is the filtering or ~ fending fluid, v is the Darcy velocity, andc is the model
Darcy velocity in the mediuna is the typical pore sizey is permeability. Therefore, under these assumptions the pres-
the surface tension between the two fluids ani$ the per-  SUré P recorded at the model outlet as a function of time
meability of the porous medium. Various values for the capfluctuates around a linear trend, the slope of which is nega-
illary number give rise to different displacement structuresive and proportional tpg— uv/«. Note that such a linear

The limit cases, i.e., capillary fingering f@,<1 and vis- dependence of t_h_e outl_et pressure is only (_axpected for stable
cous fingering forIC,>1, are well known fronts. The conditions, in which these conditions are met, are
a ’ .

For displacements sufficiently slow for viscous forces to®*Plicited in Sec. Il C.
be negligible with respect to the fluctuations in threshold _ _
capillary pressures, the width of the invasion front is con- 2. Scaling of the front width

trolled by the latter fluctuations along the front. The dimen- The following arguments follow the lines ¢25,26,3Q.
sionlessBond number B [25-27, quantifies the competi- Consider two different pores along the invasion front, la-
tion between capillary forces and gravity at pore scale: beled A and B and separated by a distanéealong thez
) direction (see Fig. 4 If the density and viscosity of the
B :Apga 3) invading nonwetting fluidair) are negligible, the pressure in
© vy the invading nonwetting fluid is constant and in the follow-
ing we use this as our reference presdegg,=0. The cap-
whereAp is the difference in the two liquids’ densities agd jllary pressure over poré is denotedP,. If we further
is the component of gravity along the direction of displace-assume that the viscous field in the defending wetting fluid
ment. The front widthw for these slow displacements was along the front can be described by Darcy’s law, the capillary
found to scale with th@ond numbeasw~ B, """ [25—  pressure over por®, Pg, can be written as the sum of
27], wherev is the percolation correlation length exponent hydrostatic and viscous pressure differences:
[43], which for 2D systems is=4/3.
In another limit case in which a less viscous fluid invades
a more viscous liquid at high capillary number, the displace- Pg=Pa+ pgé— vr 3 (5)
ment structure is controlled by viscous forces, which desta- K
bilize the invasion front. This viscous fingering regime has The pore throats in the porous medium have widths that
been studied both in terms of experimefni<!, 18,44 and are spatially uncorrelated. Each pore throat exhibits a capil-
numerical simulation$§9,17,45. lary threshold pressurB, which is the minimum capillary
The effect of gravity has been studied for sufficiently low pressure needed for the interface to penetrate the pore throat.
capillary numbers in both two and three dimensionsFor a throat with a meniscus at capillary pressBig the
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Interface

B

FIG. 4. Sketch of a section of the front including two pores
separated by a vertical distanée The capillary pressure over the
pore labeledA is assumed to be the critical percolation threshold
pressureP.. Assuming stable displacement, we can calculate the

pressure at porB.
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pga—

F= W, (10

The generalized fluctuation numberguantifies the ratio be-
tween the average pressure drop over pores and the fluctua-
tions in capillary threshold pressures in the porous medium.
It can be further related to the previously defined Bond and
capillary numbers according to

a
Bo—Ca=- WIF. (11)

For convenience we define a generalized bond nurBfeas
B =B,—C,. (12

The lengthé is assumed now to be the correlation length of
percolation clusters. Since the linear size of the largest

criterion for invasion isP.> P, . The randomness of the po- trapped clusters of wetting fluid is limited by the front width

rous medium gives a distributioN(P;) for the capillary
threshold pressure.

w [25,26,40,47, the correlation length is related to the front
width in our problem asw=¢&/a. From percolation theory

Let us now consider an arbitrary throat in the medium andve know([43,47 that

assume it has a meniscus with capillary presfRge The
probability p that this throat will be invaded is

PC
p=p*+ | N(Poap,, ©®)

¢ -
AS=(p—p*) ", (13

where v is the correlation length exponent aAdis a con-
stant of order unity{26,48. This scaling relation combined

where p* is the occupation probability at the percolation with Eq. (9) yields

capillary pressur@* for a flat model.P* would then be the

lowest capillary pressure needed to produce a percolating 3

cluster of invading fluid. Taylor-expandirg(P;) aroundP*
we get

N(P)=N(P*)+N'(P*)(P,—P*)+ -
and to the lowest order inR;—P*) Eg. (6) becomes
p—p*=N(P*)(P.—P*). (7

If we now let the capillary pressure over paken Eg. (5) be
the percolation threshold capillary pressié, we can use
Eq. (5) to rewrite Eq.(7) as

UM
p—p*=N(P*%pg£—j;§). 8
Assuming thatN(P,) varies slowly aroundP*, we can esti-
mateN(P*) =1/, [30], whereW, is the width of the nor-
malized capillary threshold pressure distributidd(Py).
With this assumption, Eq8) can be rewritten as

©)

where the dimensionlesgeneralized fluctuation number F
[30] has been introduced:

-V

A

- 14

Aw=A —=
a

which leads to the following scaling relation for the front
width w:

_ Y
— vl(1+v) —
w~F (W

—vl(1+v)
a ) (15

BS

This relation is similar to the one obtained in capillary fin-
gering under gravity25,30], but in our case the generalized
fluctuation numbeF replaces the ordinary Bond numbg

in the scaling relation15). It is important to note thafF
depends on the width of the capillary threshold distribution
W, and that an increase in this width therefore gives an in-
crease in the front width. In the experiments described in this
paper,W, is kept constant. The range of validity of Ed.5)
does not extend to situations where both viscous and gravi-
tational forces exceed the capillary forces on pore scale.

B. Limit of stability

The front widthw in the scaling relation in Eq.15) di-
verges when the generalized Bond number goes to zero
(gravity forces balance viscous for¢e$his suggests a cri-
terion for finite front widths and thus stable displacement
when
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v mum accessibl®} for a given capillary number decreases
P9~ 7>0- (16 with Ca, Which explains why the highest values B} in-
vestigated here could not be reached for all value€ of
This is the same stability criterion as derived by Saffman and When increasing gravity for a given withdrawal speed
Taylor[36] for the Hele-Shaw cell, though capillary forces in (thus, following a column in Fig. 5 from bottom to tpghe
a Hele-Shaw configuration act at the scale of the systerdisplacement front is observed to evolve from narrow
width L (see Fig. 1, while in our porous medium they act at branched fingers to a nearly flat geometry, if the generalized
the pore scal@, which is much smaller thab. Section IVE  Bond numberB} can be increased enough. Thus, viscous
addresses in more detail the differences between the mecheffects are responsible for a fingering of the displacement
nisms of the instability in our model and in a Hele-Shaw cell.structure that can be stabilized by gravity. The similarity be-
tween all pictures on a given line of Fig. 5 suggests that the
C. Unstable displacement generalized Bond number is the controlling parameter for the
rocess. This is consistent with relati¢tb), which will be
iscussed further in Sec. IV D.

Front destabilization at large withdrawal speed and low
gravity appears more clearly in Fig. 6, which looks alike Fig.
5, except that each picture represents the whole dynamics of
an experiment. Indeed, a gray level map displays the evolu-
vi(1+v) 17) tion of the displacement front with time. Time is the vertical

descending coordinate, and each horizontal line on a map is

From these results on buoyancy driven unstable systems wepresentation of the front at a given time. The coordinate
might conjecture that the above equation can be extended fONg thet-line is the horizontal coordinate, The gray level
the unstable case to include viscous effect, by replacing i@t & givenx along a givert-line corresponds to the difference

Slow buoyancy driven unstable displacement has bee
studied in both two and three dimensioi2¥,31,32,49 In
this slow regime, stringfingen like structures develop. Their
characteristic widthw; was found to scale with the Bond
number in a similar fashion as the width of stable fronts:

Wf"’Bg

Eq. (17) B, with —B* : between the position along of the most advanced front
© © point at horizontal positiorx and the mean front advance-
wa(_Bg)—vl(Hv)_ (18) ment alongz. A constant gray level along a horizontal line

means that the front is flat. Large variations of the gray levels
An experimental verification of this conjecture is the purposedlong the line mean that some parts of the fr@atrespond-
of ongoing work. ing to dark shadingsare left far behind other&orrespond-
ing to light shadings Thus, front destabilization appears as
V. RESULTS an increase of the roughness of the gray level map from the
' top to the bottom of the figure. Light shaded structures cor-
With the setup described in Sec. Il A, four main series ofrespond to fingers development. These structures can widen
experiments were performed, corresponding to a total of 5&s a result of the branching of the fingers, at IB{y. The
experiments: three series at constant capillary nuniber same gray scale has been used throughout all pictures, which
=82x10"3, 13010 3, and 19010 3, and one series at allows us to compare the importance of the fingering process
constant Bond numbeB,=0.155. Table | summarizes the in the various experiments. Pictures with homogeneous and
experimental conditions for all experiments: inclination small amplitude roughness correspond to experiments with a
angle« and withdrawal rateQ, and the corresponding cap- stabilized front. The two experiments wiBf >0 fulfill this
illary numberC,, Bond numbeB,, and generalized Bond criterion. The intermittency of the dynamics for stable dis-
numberB} . The experiments are numbered by decreasinglacement is visible: a finger stops growing after a while,

B . because its length has reached a value that causes gravity to
stabilize it; then another finger grows, or the slow part of the
A. Observations of the displacement structure front catches up fingers. ABS is decreased below 0, gravity
when varying B* is not sufficient to prevent the fingers from growing forever,

) ) ) . and, subsequently, to keep the front total vertical extent
Figure 5 shows the pictures of experiments for various, o nd a fixed value. This fingering becomes more important
capillary numbers and Bond numbers. The pictures showlg gx s fyrther decreased. Thus, the crossover for the vis-

here correspond to experiments labeled 4, 8, 13, 17, 22, 240Us instability i ;
. y in the presence of gravity seems to occur
25, 28, 29, 31, 46, 49, 50, 58 in Table |, from top to bOttomaroundB;‘ =0, in good consistency with the theory exposed

and from left to right, respectively. Each column of the ﬁgurein Sec. Il
corresponds to the same capillary num@gr, that is, to the T
same withdrawal speed applied during the experiment. The
withdrawal rates in question are all large enough for the sys-
tem to exhibit viscous fingering at zero inclination angle. The destabilization of the front for negative values3f
Each line of the figure corresponds to the same generalizeglearly appears in Fig.(@), where the maximal extension of
Bond numbeB} =B,—C,. The maximum accessible Bond the front along the direction of displacemert)( Az, is
number is related to the maximum inclination angle possibleplotted as a function of time normalized by the time at break-
with the setup(around 55°). As a consequence, the maxi-through, for experiments a€, around 0.08. Thanaximal

B. Transition from stable to unstable drainage
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TABLE I. Summary of the inclination angles and withdrawal rates used for each of the 58 experiments. The corresponding characteristic
numbersC,, B,, andB} are also given. Depending on the withdrawal rate, the uncertain€,and, consequently, &% , not shown in
this table, ranges between 0.009 and 0.025.

Index 1 2 3 4 5 6 7 8 9 10 11 12

a (deg 54.9 54.9 54.9 54.7 54.9 45.0 54.2 35.7 54.9 30.2 54.9 45.0
Q(ml/min)  0.040 0.480 0.710 1.000 1.280 0.990 1.500 0.990 1.750 0.990 1.740 1.460
Bo 0.155 0.155 0.155 0.154 0.155 0.134 0.153 0.110 0.155 0.095 0.155 0.134
Ca 0.0032 0.0389 0.0581 0.0826 0.0988 0.0787 0.1193 0.0825 0.1351 0.0779 0.1424 0.1341
B 0.1516 0.1159 0.0967 0.0719 0.0560 0.0551 0.0342 0.0279 0.0198 0.0173  0.642BO0O3
Index 13 14 15 16 17 18 19 20 21 22 23 24

a (deg 24.9 39.9 22.6 54.9 39.9 311 19.9 33.1 37.1 17.4 34.9 30.0
Q(ml/min)  0.980 1.480 1.000 2.260 1.540 1.480 1.030 1.480 1.530 1.000 1.510 1.450
Bo 0.080 0.121 0.073 0.155 0.121 0.098 0.064 0.103 0.114 0.057 0.108 0.095
Ca 0.0809 0.1245 0.0787 0.1622 0.1296 0.1142 0.0811 0.1211 0.1358 0.0803 0.1329 0.1231
B —0.0013 —0.0031 —0.0060 —0.0074 —0.0082 —0.0165 —0.0167 —0.0177 —0.0217 —0.0237 —0.0246 —0.0285
Index 25 26 27 28 29 30 31 32 33 34 35 36

a (deg 50.2 48.1 15.0 12.5 27.0 28.9 44.9 48.1 26.8 54.7 54.9 54.9
Q(ml/min)  2.020 2.000 1.040 1.000 1.480 1.500 2.020 2.060 1.610 2.070 2.520 2.270
Bo 0.145 0.141 0.049 0.041 0.086 0.091 0.134 0.141 0.085 0.154 0.155 0.155
Ca 0.1778 0.1745 0.0859 0.0787 0.1257 0.1332 0.1778 0.1860 0.1330 0.2029 0.2042 0.2050
B —0.0324 —0.0336 —0.0369 —0.0378 —0.0397 —0.0417 —0.0442 —0.0452 —0.0476 —0.0485 —0.0494 —0.0502

Index 37 38 39 40 41 42 43 44 45 46 47 48

a (deg 44.9 20.3 10.0 44.9 44.9 43.7 5.0 14.9 10.0 0.0 35.6 28.1
Q(ml/min)  2.050 1.470 1.000 1.960 2.000 2.000 0.990 1.460 1.510 1.020 2.200 2.000
Bo 0.134 0.066 0.033 0.134 0.134 0.131 0.016 0.049 0.033 0.000 0.110 0.089
Ca 0.1867 0.1191 0.0880 0.1891 0.1961 0.1945 0.0841 0.1262 0.1235 0.0961 0.2072 0.1899
B —0.0531 —0.0535 —0.0551 —0.0555 —0.0625 —0.0638 —0.0676 —0.0776 —0.0907 —0.0961 —0.0970 —0.1008

Index 49 50 51 52 53 54 55 56 57 58

a (deg) 5.2 211 15.0 0.0 0.0 54.7 15.0 9.3 32.3 0.1

Q(ml/min)  1.490 1.970 1.950 1.470 1.470 2.800 2.000 1.980 2.600 1.970

Bo 0.017 0.068 0.049 0.000 0.000 0.154 0.049 0.031 0.101 0.000

Ca 0.1208 0.1779 0.1626 0.1169 0.1169 0.2810 0.1992 0.1819 0.2750 0.1886

B —0.1036 —0.1098 —0.1136 —0.1169 —0.1169 —0.1265 —0.1502 —0.1513 —0.1739 —0.1882

extensiorof the front is defined as the maximal vertical dis- and unbounded fingering appears to occur for a value of the
tance between two points on the front. At large positive gengeneralized Bond number between0.006+0.009 and
eralized Bond numbers, the front extension rapidly grows t®.017+0.013, in good consistency with the predicted value
reach a constant plateau. FluctuationsAaf occur around for the generalized Bond number at the crossoB&r=0.

this average front extension due to the randomness of the Also consistent with the predicted crossover is the evolu-
medium. As the Bond number is decreased, these fluctuaion of the pressure drop across the model. Figuibg Shows
tions grow. Viscous fingering features appeAz exhibits  the evolution of the pressure drop between the flammo-
sudden drops that are characteristic of the merging of twapheric pressujeand the outlet channel of the model during
nearby fingers. For negative valuesBjf in the intermediate the same experiments as in Figajz For stabilized experi-
regime, the front extension has a growing trend with no satuments 8} >0), it has been predicted to be linearly depen-
ration and important sudden drops due to finger merging. Fodent on time. This can be seen in Figb) for the four
large negative values dBj (not shown in Fig. 7, these experiments with stable displacement. Bjr close to 0, the
drops disappear, as a small number of very thin fingers exispressure drop shows little variations during drainage: gravity
that never merge. The crossover between stable displacemeasactly balances the mean viscous pressure gradient. When
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Cq € [0.071;0.092] Cq €[0.107;0.139] C, € [0.160;0.206] Ca € [0.071;0.002] Ca €[0.107;0.139] Ca € [0.160;0.206]

B} =0.072 £0.009

B} = 0.072 £ 0.009

B} =0.028 £0.009

B = 0.028 £ 0.009

B? €[~0.021;0.013]

B} € [-0.053; —0.005]
B € [-0.021;0.013] el ]

B € [-0.063; —0.019]

B; € [—0.053; —0.005]

B? € [~0.125; —0.089)

B; € [-0.063; —0.019] B] = —0.188+0.018

FIG. 6. Evolution of the dynamics of the displacement when
varying capillary numbelC, and generalized Bond numb& .
The values for these numbers are the same as in Fig. 5. Each picture
displays the evolution of the displacement front with time. Axes for
time and horizontal direction are shown in the figure. The hori-
zontal size of a picture corresponds to the model wi@gcm). The
vertical size corresponds to the time at breakthrough, which de-
pends on the values f&@, andB,. The gray level is proportional
to the advancement of the front point in question with respect to the
front mean position. Only the two top pictures, that exhibit a ho-
mogeneous roughness of small amplitude, correspond to experi-

FIG. 5. Pictures of the displacement structure for three series opents where the viscous instability is overcome l_)y gravity. The
experiments at capillary numbe,=0.081, 0.123, and 0.183, re- numbers inserted in the pictures refer to the index in Table I.
spectively. The provided ranges include the uncertaintZgriand C. Geometrical properties of the front
subsequently, oiB%) due to that on the viscosity measurements.
The pictures represent the whole model ¥&b cnt). For each
series, the displacement structure for an experiment with a gener
ized Bond numberB} around 0.072, 0.028;-0.002, —0.028,
—0.041,—-0.107, and—0.189 (measured valugss shown. Stabili-
zation of the front is observed for all series when sufficiently in-
creasingB; (bottom to top; the crossover value @} for stabili-
zation appears to be close to 0. The numbers inserted in the pictur
refer to the index in Table I.

B} € [-0.125; —0.089]

B} = —0.188 +0.018

The influence on drainage dynamics of the various physi-
Sfal effects involved appears when considering the evolution
of the front fractal dimension during an experiment. Indeed,
the limit cases in terms of displacement rate are well known.
For very slow displacements, viscous effects have little in-
fluence on the interface. The displacement front for this cap-
ggary fingering regime is analogous to what is observed in
inversion percolation. It is fractal, with a fractal dimension
1.33[13]. In contrast, viscous fingering occurs for very fast
displacements, and leads to thin branched fingers that exhibit
a fractal structure with a dimension that has been measured
the average total pressure gradient turns positive, local ety 1.62+0.04[14].

fects in the viscous pressure gradient become significant, and The fractal dimensions measured in our experiments are
nonlinearity appears in the pressure curves, while the trengonsistent with these well-known values. Two families of
of the pressure evolution changes from a decreasing to dionts with behaviors close to gravity stabilized capillary fin-
increasing behavior. gering and viscous fingering, respectively, have been ana-
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0 | | |
0 05 1 10° 10’ 102
Time 1/, Scale s (pore size)
40.0 FIG. 8. Characterization of two fronts corresponding respec-
— Bo=0.07220.009 tively to capillary (A) and viscous(B) fingering, using the box-
— - B,*=0.055£0.009 Y piilary gering, g :
200 - B_*=0.028+0.009 counting method. The front labeled A corresponds to an experiment
: — B,*=0.017 £0.009 with a very slow withdrawal rat¢0.006 ml/mir). Front B corre-
= — = B,'=0.006% 0.009 sponds to an experiment with no gravity and a withdrawal rate of 5
N e N ofgglifgg;: ml/min. These two experiments are not referenced in Tak\g Is
; B e the number of boxes of side lengshrequired for entirely covering
o — B:ﬂ=.o_06810_009 the front. The observed trends for A and B are consistent with those
E 10.0 e expected for pure capillaryslope —1.33) and viscous fingering
2 BT (slope—1.62), respectively.
] _~"""~'--.-—-
:qh_, - Rt L LT DLV VA,
' scales,” we mean scales smaller than the size of the clusters
trapped inside the branched fingers.
10.0 For the intermediate regimes in which viscous forces and
gravity are of the same order of magnitude, parts of the front

display fingers controlled by viscous effects. The finger tips
progress faster than other parts of the front, which are con-
FIG. 7. () Evolution of the extension of the front along the trolled by the balance between capillary forces and gravity
direction of displacementzj, Az, as a function of time normalized (€€ Fig. 3 The evolution of the correlation function on the
by the time at breakthroughb) Evolution of the pressure drop Whole range of scales during an experiment gives hints on
between the front and the model outlet channel, as a function o€ dynamics of the displacement process. In Fih),9
normalized time also. The uncertainties Bfj are shown only in ~ density-density correlation functions for a series of experi-
(b). Both plots are consistent with the theoretical prediction of aments in stable regime and corresponding to various values
crossover aB} =0. of the generalized Bond numbé? , have been plotted as a
function of the scale normalized by the mean front widlth,
lyzed using both the two-point correlation function and theOne front from each of these experiments is shown in Fig.
box-counting algorithm, with consistency. The results of the9(a). They come from seven different experiments in the
box-counting method are shown in Fig. 8. The box-countingstable regime withB,=0.154 but with different injection
function for family A (capillary fingering, shown in Fig. 8, rates. By increasing the injection rate, the pressure gradients
has been obtained by averaging over all stabilized fronts ifn the fluid decrease, which yields a low@f and therefore
the corresponding experiment. The box-counting function fora wider front. At the largest speeds the fronts look visually
family B (viscous fingeringis the box-counting function for somewhat different from the fronts observed for pure capil-
a sole front because of the unstable growth. At scales smalléary stabilized fingering. The depth of the fjords are typically
than a crossover scate<s.~20 pore sizes, frontd exhibit  larger than their width.
a regime consistent with that observed for invasion percola- The correlation functions in Fig.(B) were obtained by
tion, with a fractal dimension close to 1.3. The crossoveraveraging over all stable fronts from the experiments in
scale,s., is consistent with the observed front width. At question. The correlation function is divided ks %7,
scales larger thag., the front is seen as line. FroBtdis-  which is the expected scaling in the capillary fingering re-
plays a fractal structure with a fractal dimension close to 1.6gime. The correlation function corresponding to the slowest
for scales larger than 2 pore scales and smaller than 80 povethdrawal rate(experiment 1 exhibits at small scales a
scales. FronB also exhibits some broadening of the fingersclear horizontal line characteristic for capillary fingering.
at small scales, related to capillary effects. By “small The horizontal lineC is a guide to the eye. At higher injec-
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FIG. 10. Scaling of the front width as a function of the gener-
alized Bond numbeB} for a series of experiments in stable con-
figuration atB,=0.154. The regression is consistent with a power
law with an exponent-0.55, in good agreement with the theoreti-
cally predicted relatiori15). Vertical error bars represent the uncer-
tainty on the determination of the mean front width for a given

experiment. Horizontal error bars are related to the uncertainty in
the viscosity measurements.
scales larger than the initial capillary reginfihe part on
small length scales with a slope close to 2etmut smaller
E 4 than the front width. It is important to note that all these
"0 fronts are in the stable regime. As a guide to the eye we have
g (11) B *= 0.012 also plotted the slope 03ee long-dashed ling), which is
% r (7) B,*=0.034 ] the expected slope for unstable viscous fingers. As seen in
L 2Rk Do ] the figure, the effective slope observed in the viscous cross-
gj o g":i’; over regime is larger than the slope characteristic of pure
- ) B i 1 capillary fingering, but smaller than that characteristic of
2 pure viscous fingering. At scales larger than the width of the
L | | | | fronts, the fronts become effectively linear with a slope cor-
e T — responding the dotted line, which is the expected result for
a linear front.
() Scale s/w
D. Scaling of the front width for stable displacements
FIG. 9. (a) Fronts taken from experiments Bt=0.154 and for In the case of stable displacement, Ef5) predicts a

6 different displacement rates, all corresponding to positive generscaling of the front width as a power law of the generalized
alized Bond numberB} (stable displacement(b) Corresponding Bond numberB;‘ =B,—C,, with an exponent-v/(1+ v)
correlation functions for these experiments. Each function has been: — 4/7 (~ —0.57). Figure 10 shows the evolution of the
obtained by averaging over all stable fronts. The scale is normalizeg,nt width, w, as a function oB? , for a series of experi-

by the measured front widthy, which, according to relatiofl5), is ments at Bond numbd..= 0 154;0 01. The experiments in
expected to scale & ¥’ (see Fig. 10 for a confirmation of this question are indexed f 5 '3 4 5' 7' and 9 in Table |. The
predictitc))r)r.] The hc;]riz:)ntalolliner? golrresporr]\ds o the capilla;ry fin- values for the front Widih ha\,/e ,be,en ,obtained by averéging
gering behavior, the long-dashed liNeto the pure viscous finger- I . .

ing behavior, and the dotted lifeto the linear shape of the front. '(I)'\r/zr(ﬂ:;t?)glgzztg:gg%rxtsffor?tmh;hszﬁgirt 23;5%??;}1%?%22;2?;&_

Experiment 1 is close to pure capillary fingerifag exposed in Fig. . . . .
8 (case A]. Due to viscous effects, the dynamics of the displace-N9 ON the choice of the time after which the fronts are sup-

ment is not that of invasion percolation for regimes close to theo_Osecj to_be stabilized. The_ dependencevain Bg _iS con-
instability threshold. sistent with a power law with an exponent0.55, in good

agreement with the theoretical predictions.

tion rates the correlation function displays a crossover which
becomes more significant as the injection rate is increased.
This crossover is the Hallmark of significant viscous effects The viscous instability observed in the present article ap-
and is seen as an increase in the effective slope on lengihears for a magnitude of gravity identical to that of the vis-

E. Discussion
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cous forces. Such a crossover was also observed by Saffmamolution for configurations close to the instability threshold,

and Taylor in a Hele-Shaw cell with no porous medium un-in Fig. 7: do these large fluctuations diverge or do they os-

der the same conditions. However, though the forces respogillate around a constant value? In the case of the Hele-Shaw

sible for the stability or instability of the interface are of cell configuration, in contrast, the instability can be inferred

identical nature, the resulting displacement processes are sigs soon as a significant roughness appears in the front. In a

nificantly different in the two geometries. sense, the complexity of the porous medium translates into a
The first striking difference lies in the nature of stable complexity in the viscous instability.

displacement in the two configurations. A stable displace-

ment in the Hele-Shaw cell configuration means that the V. CONCLUSION

front exhibits no roughness. Observed in the uniformly mov-

ing referential attached to its mean position, the front is sim-  \We have studied experimentally the displacement of a
ply static. In our porous model, in contrast, an initial front mixture of glycerol and water by air at constant volumetric
roughness appears due to capillary fluctuations; during latefow rate in a synthetic random two-dimensional medium.
stages of the drainage process, this roughness develops dpge experimental setup allowed the tuning of gravity by tilt-
to both local viscous effects and inhomogeneous capillaryng the setup and of viscous effects by changing the with-
forces. The resulting displacement front has a significangirawal rate. The aim of the study was to investigate the
roughness in the direction of displacement. Observed in therossover regime from capillary fingering to viscous finger-
moving frame attached to its mean position, the front is eveing during drainage with gravity. To account for the relative
changing, but with an amplitude that saturates after a certaifnportance of viscous- and gravitational effects during drain-
time to a value that can be as high as 50 pores scale unitgge, we have introduced the fluctuation numBewhich is
Thus, stable displacemertonsists here in an ongoing com- defined as the ratio of the effective fluid pressure diiap,
petition process where departing viscous fingers are preaverage hydrostatic pressure drop minus viscous pressure
vented by gravity from developing too much ahead of thedrop) at pore scale to the width of the fluctuations in the
front mean position on behalf of other fingers or slowly mov-threshold capillary pressures. We observe a crossover at
ing portions of the front. The front width is controlled by the =0 between a Conﬁguration where the disp|acement front
ratio of the mean effective pressure gradient inside the modqedeeps a finite extension along the direction of floR=0)
(Le., hydrostatic pressure gradient minus viscous pressuignd a situation where fingers grow ahead of other parts of the
gradient to the inhomogeneous capillary forces. The mearyront, forever E<0). Gravity stabilized capillary fingering
effective pressure gradient is denoted by the generalizeghd pure viscous fingering appear as limit cases where vis-
Bond numberB; =B,—C,. The inhomogeneous capillary cous effects or gravity effects, respectively, have little influ-
threshold pressures result from the randomness in the porogsice on the displacement structure.
media. This inhomogeneity could be quantified by the width  |n intermediate regimesH close to 0, the dynamics of
W, of the capillary threshold pressure distributiNiGP;). In the displacement seems to hold features characteristic of in-
our case, it is measured to W~ y/(4a). The ratio be- vasion percolatior{for short length scales of the fronas
tween the effective pressure gradient and the fluctuations ivell as features characteristic of viscosity-controlled finger-
capillary threshold pressure distribution is quantified by theing. The crossover is smooth and might lead to an apparent
dimensionless fluctuation numberdefined in Eq(10). Due  misleading dimension of the front in a midrange between
to the homogeneity of our porous mod#/; happens to be capillary regime and viscous fingering dimension. The drain-
constant in space. For a medium with a varying pore scaleage process is both inhomogeneous in time and space. For
Eq. (15 indicates possible significant changes in the frontpositive values of the fluctuation number, the front width has
width during the displacement process for constant flow rate, physical meaning in terms of fluctuations of the front
and gravity component on the model. In the framework ofaround a mean position that progresses at constant speed.
this study, the extensively studied capillary and viscous fin-This front width is controlled by viscous effects and scales as
gering appear as limit cases where the capillary nunibgr, a power law of the fluctuation number with an exponent
or Bond numberB,, respectively, are negligible. The scal- —4/7 [see Eq.(15)], a scaling law that we predict theoreti-
ing relation obtained for the front width in stable displace-cally and that is nicely confirmed by the experiments.
ment as a function of, and thus, ofB} , is therefore a For negative values of the fluctuation number, character-
generalization of that previously obtained for capillary fin-istic length scales are difficult to find in the problem. The
gering. Indeed, Bond number and generalized Bond numbewidth of the developing fingers might be a suitable charac-
are identical when the capillary number is negligible. teristic scale, with a scaling relation identical to Etp) as a
Second, the transition from stable to unstable displacefunction of the generalized Bond numbe(ar, equivalently,
ment in our system does not consist of a radical change ithe fluctuation numberjsabsolute value.
the local dynamics of the interface, as for viscous instability
observed in a Hele-Shaw cell. For a configuration close to
the instability threshold, it is difficult to know, by looking at
the local dynamics of the displacement in our experimental The work was supported by NFR, the Norwegian Re-
model, whether the front amplitude is going to reach a satusearch Council, VISTA, the Norwegian Academy of Science
ration value or whether it is going to grow forever. This is and Letters’ research program with Statoil and the French/
also visible from the large fluctuations in the front width Norwegian collaboration PICS.
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